

RÉSEAU DE RECHERCHE STRATÉGIQUE DU SUR LES BÂTIMENTS A CONSOMMATION ÉNERGÉTIQUE NET ZÉRO

Caroline Hachem, PhD,
B. Arch, MSc. Arch., MSc. Eng.
Postdoctoral fellow,
NSERC Smart Net-zero Energy Buildings Strategic
Research Network
Concordia University

- Building design plays a key role in influencing energy consumption of neighbourhoods.
- Some design parameters can significantly affect the solar potential and energy performance of houses and neighborhood
 - ► They should be implemented since the **design stage**.

This presentation assumes that we have the possibility to design a whole solar neighborhood, or a cluster of buildings in a neighborhood.

TOWARDS NET ZERO ENERGY COMMUNITIES

Net Zero Energy Neighborhood

1. Housing design

- Building envelope
- Geometrical parameters
- Roof design-ready for the integration of solar collectors

2. Neighbourhood design

- Road layout
- Density: Row and spacing effects

3. Towards Mixed Use Neighbourhoods

Program

BUILDING DESIGN

Dwelling Shapes

Insulation and South Window Effect

- Trade-off between using higher insulation and larger south facing window area.
- Optimal value of insulation is selected to balance between the increase in cost and energy saving.

Dwelling Shapes

Insulation and South Window Effect

· Mar

Effect of window properties

Dwelling Shapes

Insulation and South Window Effect

Orientation

Aspect Ratio

Depth Ratio

Angles between mutually shading facades

Increase of heating load by 30%

- 0°-30° increase of heating load by 8%
- 30°-60° increase of heating load by 30%

Dwelling ShapesOrientation

The aspect ratio should be selected to compromise between heating and cooling loads

Dwelling Shapes

Aspect Ratio

Important to design the larger facade of the building with a near south orientation

Solar neighbourhood design

Orientation

- Deviation from rectangular shape leads to increase in heating load, however
- > Proper design of facades and windows can reduce the energy use
- Non rectangular shapes may counterbalance the increase of heating load

Dwelling Shapes

Reducing the energy use

- Basic south window (10% of floor area)
- Window 35% of south facade
- Window 50% of south facade

Heating consumption is reduced dramatically for shapes like U and H when the south window constitutes 50% of the façade.

- Deviation from rectangular shape leads to increase in heating load, however
- Proper design of facades and windows can reduce the energy use
- Non rectangular shapes may counterbalance the increase of heating load

Dwelling Shapes

Dwelling Shapes

Benefits of non rectangular shapes

 Building shapes like in shapes, H and T shapes have larger south facing roof are for the same floor area and therefore have the potential to integrate larger PV system.

Dwelling Shapes

Benefits of non rectangular shapes

- Living areas in shapes like L, U and T shapes have less depth
- ightharpoonup penetration of solar radiation which is beneficial for daylight and passive heat

Dwelling Shapes

Reduction of wasted space for circulation and vestibules, which can save land area

Dwelling Shapes

(b)

- Optimal tilt angle approximates the latitude of the location
- Optimal orientation is near south

Photovoltaic Integration

Tilt Angle

Photovoltaic Integration

Orientation

NEIGHBORHOODS

- Solar community concepts allow for:
- non-rectangular or rectangular house shapes and designs,
- appropriate BIPV roof designs,
- optimal design passive solar gains.
- These designs affect significantly the peak demand and the peak generation of electricity.

Hachem C., A. Athienitis, P. Fazio, (2011), **Investigation of Solar Potential of Housing Units in Different Neighborhood Designs**, *Journal of Energy and Buildings*, <u>Volume 43</u>, <u>Issue 9</u>, Pages 2262-2273.

Solar neighbourhood design: Optimizing solar potential

• The average heating load is not significantly affected by the layout of streets provided solar access is respected.

Solar neighbourhood design Road layout

· March

Example of trade -off between different building shapes, land area and energy efficiency

Solar neighbourhood design

Road layout

up to 35% reduction of heating load can be achieved in attached units

Solar neighbourhood design

Density-Effect of Spacing

Winter Sun

Height

Living area

Living area

The distance between rows is dependent on the height of the shading buildings (about 2 times)

Solar neighbourhood design

Density-Effect of Spacing

Shape of housing units

- a) General site considerations
- b) Minimizing total area for a given functional area.
- c) Energy considerations Passive and Active solar design.

General

- Orientation: within the optimal range. Otherwise, trade-offs in shape design should be made.
- o South facing window area.

Rectangular shapes:

Aspect ratio – of 1.3 to 1.6 should be applied.

Self-Shading shapes (like L shape)

- o Number of shading facades
- Ratio of shading to shaded façade widths (depth ratio), and
- o Angle enclosed by the wings.

Roofs (default hip roof):

Key effects: surface area, tilt angle and orientation.

Design Guidelines

Positioning of housing units on a site.

a) Straight road (east west direction)

Low density- Detached units

Apply passive solar design for shapes. Minimum distance between adjacent units (bylaws)

High density- Attached units

O Attached units are recommended for increased density. For non-convex shapes configurations, the depth ratio and number of shading facades should be considered.

b) Curved Road

Low density- Detached units

- Planar obstruction angle (POA)
- o Orientation around the curve

High Density - Attached units

 Similar observations as for straight road. Additional design issues should be addressed.

c) Row Configurations

Low density – Detached units

Distance between rows of 1.5 - 2 times the height of the shading building.

High density – Attached units

The same design recommendations as detached units.

Design Guidelines

